Primitive root bias for twin primes II: Schinzel-type theorems for totient quotients and the sum-of-divisors function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Ratio of the Sum of Divisors and Euler’s Totient Function I

We prove that the only solutions to the equation σ(n) = 2 · φ(n) with at most three distinct prime factors are 3, 35 and 1045. Moreover there exist at most a finite number of solutions to σ(n) = 2 ·φ(n) with Ω(n) ≤ k, and there are at most 22 k+k − k squarefree solutions to φ(n) ∣∣σ(n) if ω(n) = k. Lastly the number of solutions to φ(n) ∣∣σ(n) as x→∞ is of order O (x exp (−1 2log x)).

متن کامل

the search for the self in becketts theatre: waiting for godot and endgame

this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...

15 صفحه اول

Bounded gaps between primes with a given primitive root, II

Let m be a natural number, and let Q be a set containing at least exp(Cm) primes. We show that one can find infinitely many strings of m consecutive primes each of which has some q ∈ Q as a primitive root, all lying in an interval of length OQ(exp(C ′m)). This is a bounded gaps variant of a theorem of Gupta and Ram Murty. We also prove a result on an elliptic analogue of Artin’s conjecture. Let...

متن کامل

On Square Values of the Product of the Euler Totient and Sum of Divisors Functions

If n is a positive integer such that φ(n)σ(n) = m for some positive integer m, then m 6 n. We put m = n − a and we study the positive integers a arising in this way.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2020

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2019.08.003